This model is a test of calculations the normalized black body and visual response distributions and the physical constants used to provide physically meaningful results. The curve on page 2 will be compared with a curve in the RCA Electro-Optics Handbook (pg 41), they should be identical if the algebra is correct.

For calculations such as the transmissions of several components in series the peaks of the band pass curves may be normalized to 1, then the shape of the transmission function is given by the product of the bandpass curves. When the calculation involves black body radiation, the shape of the excitation curve as well as the amplitude change with temperature. The result of this calculation is the "illumination efficacy and efficiency" of a black body as a function of temperature. It is necessary to account for the amplitude change with an equation that describes that change, as well as the normalizes black body equation.

set up of the calculations

$E\Lambda_{max} := 680 \cdot nano \cdot m$	$E\Lambda_{\min} := 400 \cdot nano \cdot m$	range of visable wavelengths		
$T_{max} := 20 \cdot 10^3 \cdot K$	$T_{min} := 2 \cdot 10^3 \cdot K$	the range of color temperatures		
N := 50		number of calculations - 1		
$R := 10^{\frac{1}{N} \cdot log\left(\frac{T_{max}}{T_{min}}\right)}$	R = 0.556 K	the spacing between adjacent color temperatures is geometric, R is the ratio		
count := 0 N		calculation counter		
$T_{count} := T_{min} \cdot R^{count}$		color temperature for the calculation		

calculations of luminous efficacy and luminous efficiency

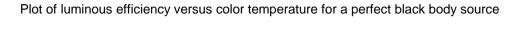
$$PE_{count} := \int_{E\Lambda_{min}}^{E\Lambda_{max}} BB_{\lambda}(\Lambda, T_{count}) \cdot VIS(\Lambda) \, d\Lambda$$

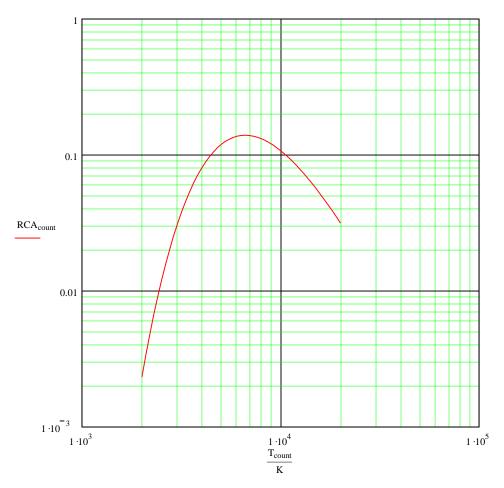
Product of normalized black body distribution for T=T.count and visual response. This equation only incorporates the shape change of the black body spectrum with temperature.

Typical_Units := microns

The quotient is the ratio of the peak spectral radiance to the total radiance. The peak spectral radiance is the quantity needed to account for the amplitude change of the black body curve. The total radiance in the denominator makes this a power efficiency quantity.

$$RCA_{count} \coloneqq \frac{M_{peak}(T_{count})}{\sigma \cdot (T_{count})^4} \cdot PE_{count}$$





the peak color temperature estimated from the graph

$$best := K_{L} \cdot \frac{M_{peak}(T_{color})}{\sigma \cdot T_{color}^{4}} \cdot \int_{E\Lambda_{min}}^{E\Lambda_{max}} BB_{\lambda}(\Lambda, T_{color}) \cdot VIS(\Lambda) \, d\Lambda \qquad best = 93.967 \, \frac{lm}{W}$$

the RCA handbook gives 95 lm/W for the quantity I call best

$$\Lambda_{\text{peak}}(T_{\text{color}}) = 0.439 \,\text{micro·m}$$
 This is not the peak of the visual response curve,
demonstrating the need to account for both black body curve
shape and amplitude for calculations similar to this.

constants and conversions

$\mathbf{h} = 6.626 \cdot 10^{-34} \mathbf{J} \cdot \mathbf{s}$	Planck's constant
$\mathbf{k} \equiv 1.381 \cdot 10^{-23} \cdot \mathbf{J} \cdot \mathbf{K}^{-1}$	Boltzmann's constant
$\mathbf{q} \equiv 1.602 \cdot 10^{-19} \cdot \mathbf{C}$	electron charge
$eV \equiv 1.602 \cdot 10^{-19} \cdot J$	electron volt
$c \equiv 2.998 \cdot 10^8 \cdot m \cdot sec^{-1}$	speed of light
$\sigma \equiv 5.670 \cdot 10^{-8} \cdot W \cdot m^{-2} \cdot K^{-4}$	Stefan-Boltzmann constant
$\mathbf{K}_{\mathrm{L}} \equiv 673 \cdot \mathrm{lm} \cdot \mathrm{W}^{-1}$	luminous efficacy @ 555 nano meters
milli = 10^{-3} micro = 10^{-6}	nano = 10^{-9} pico = 10^{-12}
	0

micron = micro·m $nm = m \cdot 10^{-9}$

GLOBAL DEFINITIONS OF BLACK BODY FUNCTIONS

spectral radiant exitance

$$M_{\lambda}(\lambda, T) \equiv \frac{2 \cdot \pi \cdot h \cdot c^{2}}{\lambda^{5} \cdot \left(e^{\frac{h \cdot c}{\lambda \cdot k \cdot T}} - 1\right)}$$

Typical_Units :=
$$W \cdot m^{-2} \cdot micron^{-1}$$

Wein's displacement law

$$\Lambda_{\text{peak}}(T) = \frac{2898}{T} \cdot \text{micro} \cdot \text{m} \cdot \text{K}$$

This gives the wavelength of the peak of the black body spectrum at temperature T

Typical_Units := micron

spectral radiant exitance at black body peak

 $M_{\text{peak}}(T) \equiv M_{\lambda} (\Lambda_{\text{peak}}(T), T)$

This gives the spectral radiant excitance of the peak of the black body spectrum at temperature ${\sf T}$

Typical_Units :=
$$W \cdot m^{-2}$$

normalized black body

 $BB_{\lambda}(\lambda,T)\equiv \frac{M_{\lambda}(\lambda,T)}{M_{peak}(T)}$

This gives the spectrum, normalized to a peak of 1, of a black body at temperature T

black body total radiant excitance

$$BBP(T) \equiv \sigma \cdot T^4$$

radiant exitance

$$\mathbf{M}(\lambda, \Delta \lambda, \mathbf{T}) \equiv \left(\int_{\lambda - \frac{\Delta \lambda}{2}}^{\lambda + \frac{\Delta \lambda}{2}} \mathbf{M}_{\lambda}(\lambda, \mathbf{T}) \, d\lambda \right)$$

This gives the total radiant power emitted from a black body at temperature T. The proof is left as an exercise for the engineer with too much time on his/her hands.

Typical_Units :=
$$W \cdot m^{-2}$$

This gives the radiant excitance over a passband with center wavelength = λ band width = $\Delta\lambda$ for a black body spectrum at temperature T

	(400)		(.0004)
lamda ≡	410		.0012
	420		.0040
	430		.0116
	440		.0230
	450		.0380
	460		.0600
	470		.0910
	480		.1390
	490		.2080
	500		.3230
	510		.503
	520		.7100
	530		.8620
	540	$\cdot 10^{-9} \cdot m$ photopic =	.9540
	550		.9950
	560		.9950
	570		.9520
	580		.8700
	590		.7570
	600		.6310
	610		.5030
	620		.3810
	630		.2650
	640		.1750
	650		.1070
	660		.0610
	670		.0320
	680		(.0170)

vision \equiv cspline(lamda, photopic)

VIS(color) = interp(vision, lamda, photopic, color)

 $VIS(500 \cdot nano \cdot m) = 0.323$